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Abstract— In this paper, we use on-line 1-step genetic al-
gorithm (1-step GA) to recognize the 6-D object in a much
bigger space comparing with other recognition methods, then
we guarantee the convergence of this method by Lyapunov
theorem. In application field, we use this 1-step GA method into
visual-servoing simulation in which by a 10-link manipulator
hand and eye-vergence system, where Lyapunov method is
utilized to guarantee the visual tracking convergence to a
moving target and visual servoing to the target is also confirmed
by the Lyapunov method.

I. INTRODUCTION

Tasks in which visual information are used to direct a
manipulator toward a target object are referred to visual
servoing in [1], [2]. This field is the fusion of many areas,
such as kinematics, dynamics, image recognition, and control
theory. This paper deals with problems of the real-time 3-
D pose (position and orientation) recognition of a target for
visual servoing and the convergence proof of this recognition
algorithm.

There is a variety of approaches for 3D target object
pose estimation, and they can be classified into three general
categories: (1) feature-based, (2) appearance-based, and (3)
model-based. We use model-based method in our research.
The matching degree of the model to the target can be
estimated by a function, whose maximum value represents
the best matching and can be solved by GA, using the
matching function as a fitness function. An advantage of our
method is that we use a 3D solid model which enables it to
possess six degree of freedom (DOF), both the position and
orientation, without following hindrances. In other methods
like feature-based recognition, the pose of the target object
should be determined by a set of image points, which makes
it need a very strict camera calibration. Moreover, searching
the corresponding points in Stereo-vision camera images is
also complicated and time consuming, e.g., [3].

GA is well known as a method for solving parameter
optimization problems [4]. The GA-based scene recognition
method described here can be designated as “evolutionary
recognition method”, since for every step of the GA’s evolu-
tion, it struggles to perform the recognition of a target in the
input image. To recognize a target by CCD camera in real-
time, and to avoid time lag waiting for the convergence to a
target, we used GA in such manner that only one generation
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is processed over newly input image, which we called “1-
Step GA”. In this way, the GA searching process and the
convergence to the target does not consist in one image but
the convergence is achieved in the sequence of the input
images to recognize it with real-time manner.

In this report, we present a hand & eye-vergence dual
visual servoing system with a stability analysis of Lyapunov
method, guaranteeing that both the tracking pose errors of
hand and eye-vergence converge to zero. There is no research
on eye-vergence visual servoing stability analysis, as far as
we know.

II. ON-LINE EVOLUTIONARY RECOGNITION

A. 3-D Model-based Matching

We use a model-based matching method to recognize a
target object in a 3-D searching area. A solid models is
located in ΣE , its position and orientation are determined
by six parameters, ψ = [rT , εT ]T , where r = [x, y, z]T ,
ε = [ε1, ε2, ε3]T . Here, the target’s orientation is represented
by unit quaternion [5], which has an advantage that can
represent the orientation of a rigid body without singularities,
when −π < θ < π (θ is defined below). The unit quaternion,
is defined as

Q = {η, ε}, (1)

where
η = cos

θ

2
, ε = sin

θ

2
k, (2)

here, k(‖k‖ = 1) is the rotation axis and θ is the rotation
angle. η is called the scalar part of the quaternion while ε is
called the vector part of the quaternion. They are constrained
by

η2 + εT ε = 1. (3)

In (3) η can be calculated by ε, so we just use three
parameters ε to represent an orientation.

The left and right input images from the stereo cameras
are directly matched by the left and right searching models,
which are projected from 3-D model onto 2-D image plane.
The matching degree of the model to the target can be
estimated by a correlation function between them as F (ψ)
by using the color information of the target. Please refer to
[6] for a detailed definition of F (ψ). When the searching
models fit to the target objects being imaged in the right and
left images, F (ψ) gives the maximum value. Therefore the
3-D object’s position/orientation measurement problem can
be converted to a searching problem of ψ that maximizes
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F (ψ). We solve this optimization problem by 1-step GA
method that will be explained in the next section.

B. GA-based On-line Recognition “1-step GA”

Theoretically optimal pose ψmax(t) that gives the highest
peak of F (ψ(t)) is defined as

ψmax(t) =
{
ψ(t)

∣∣ max
ψ∈L

F (ψ(t))
}

(4)

where L represents 6-DoF searching space of
x, y, z, ε1, ε2, ε3.

An individual of GA is defined as ψj
i (t), which means the

i-th gene (i = 1, 2, · · · , p) in the j-th generation, to search
ψmax(t). Denote ψGA

max(t) to be the maximum among the p
genes of ψj

i (t) in GA process,

ψGA
max(t) =

{
ψj

i (t)
∣∣ max
ψj

i∈L
F (ψj

i (t))
}
. (5)

In fact we cannot always guarantee the best individual of
GA ψGA

max(t) should coincide with the theoretically optimal
pose ψmax(t), because the number of GA’s individuals is
not infinite. The difference between ψmax(t) and ψGA

max(t)
is denoted as

δψ(t) = ψmax(t) − ψGA
max(t). (6)

And the difference between F (ψmax(t)) and F (ψGA
max(t))

is denoted as

∆F (δψ(t)) = F (ψmax(t)) − F (ψGA
max(t)), (7)

Since F (ψmax(t))≥F (ψGA
max(t)), we have

∆F (δψ(t))≥0. (8)

Based on the definition of ∆F (δψ(t)) in (7), in this research,
we let GA work in the following way:

(a) GA evolves to minimize ∆F (δψ(t)).
(b) The elitist individual of GA is preserved at every
generation (elitist gene preservation strategy).

(c) ψGA
max(t) does keep the same value in the evolving

when the evolved new gene with different value gives
the same value of ∆F .

Here, we present two assumptions.

[Assumption 1] ∆F (δψ(t)) is positive definite.
This means the distribution of F (ψ(t)) satisfies

∆F (δψ(t)) = 0 if and only if δψ(t) = 0, which indicates
∆F (δψ(t)) = 0 has a sole minimum at δψ(t) = 0
over the searching space L, even though ∆F is multi-peak
distribution having peaks and bottoms with limited number.
When the model overlap the target object in the image, then
the situation can make ∆F have the sole minimum in L.
0 ≤ F (ψ(t)) ≤ 1, since F (ψ(t)) is normalized to be less
than 1 and negative value to be set as zero by a definition
of correlation function F (ψ(t)) ([7]). So the fitness function
is always less than 1 except only one point which means
the ψGA

max(t) can express the target object’s pose, as shown
in Fig. 1(a). From (7), we can see when ψGA

max(t) = 1,
∆F (δψ(t)) = 0 (Fig. 1(b)), which means that only in this
case, ψGA

max(t) can express the actual pose of the target
object.

[Assumption 2] Ḟ (ψGA
max(t))≥0.

This means GA evolves itself to get a bigger fitness
function value (Ḟ (ψGA

max(t)) > 0) or keep a same value
(Ḟ (ψGA

max(t)) = 0). It is not only an assumption but also
the character of GA if the target object is static, because
the elitist individual is preserved in every generation of GA.
However, when the target object is moving, Ḟ (ψGA

max(t))≥0
will indicate that the convergence speed to the target in the
dynamical images should be faster than the moving speed
of the target object. Furthermore, with the pose tracking
in dynamic scene being input at a certain video rate, this
assumption means that F (ψGA

max(t)) have the tendency of
approaching to F (ψmax(t)), and ψGA

max(t) moves toward
ψmax(t) in each period of the input image, or keeps a
distance to ψmax(t). Since in this paper we think that the
object’s motion is enough slow comparing the calculation
speed of GA’s evolving to find F (ψGA

max(t)) from the view
point that the one image be input every input video period
and evolving iterations in input video period are enough to
catch up with the F (ψGA

max(t)) being stationary during the
input video period.

Differentiating (7) by time t, we have

∆Ḟ (δψ(t)) = Ḟ (ψmax(t)) − Ḟ (ψGA
max(t)). (9)

We defined F (ψmax(t)) = 1 representing that the
true pose of the target object gives the highest peak.
Therefore, the time differentiation of F (ψmax(t)) will be
Ḟ (ψmax(t)) = 0. Thus, from (9) and [Assumption 2], we
have

∆Ḟ (δψ(t)) = −Ḟ (ψGA
max(t))≤0. (10)

ψGA
max(t) represents current best GA solution. [Assumption

2] means GA can change its best gene ψGA
max(t) to always

reduce the value of ∆F regardless of dynamic image or static
one, which indicates that the convergence speed to the target
in the dynamically continuous images should be faster than
the moving speed of the target object.

We cannot guarantee that the above two assumptions
always hold, since they depend on some factors such as
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object’s shape, object’s speed, definition of F (ψ(t)), pa-
rameters of GA and viewpoint for observing, lightening
environment, computer’s performance et al. However, we
can make efforts to improve the environment and correlation
function and so on. Providing above two assumptions be
satisfied, (8) and (10) hold, then ∆F (δψ(t)) is so-called
Lyapunov function. The objective here is to verify that
δψ(t) asymptotically stable, resulting in it converges to 0
by using the Lyapunov function of ∆F (δψ(t)), meaning
ψGA

max(t)−→ψmax(t), (t→∞), and the following shows
the way.

Since ∆Ḟ (δψ(t)) is only negative semi-definite, in the
view of LaSalle theorem, δψ(t) asymptotically converges to
the invariant set of the solutions δψ satisfying ∆Ḟ (δψ(t)) =
0. Considering the following expression,

∆Ḟ (δψ(t)) =
∂∆F

∂δψ
· δψ̇ = 0, (11)

the first part ∂∆F/∂δψ describes partial differentiation
of ∆F with respect to δψ, implying steepest descending
direction of ∆F in the space of δψ; the second part δψ̇
describes the difference between the moving speed of the
target object and the evolution speed of the best gene of
GA, by the definition in (6).

Equation (11) shows the invariant set of the solutions
of ∆Ḟ (δψ(t)) = 0 includes (1): P1, the solution set of
∂∆F/∂δψ = 0; (2): P2, the solution set of δψ̇ = 0; and
(3): P3, the solution set satisfying ∂∆F/∂δψ 6= 0, δψ̇ 6= 0,
but their inner product is 0.

As shown in Fig. 2, P1 includes the points of δψ that
give the local maximum or minimum values of the function
∆F including 0. The number of these points is finite by
[Assumption 1] denoted by p, that is

P1 = {0, δψ1, δψ2, · · · , δψp−1}. (12)

Concerning (1), the evolving process of GA may stay tem-
porarily at the same ∆F value. If the target object is static,
it means the best gene of GA stops at some moments for the
reason that the limited individuals of GA could not improve
a current solution that gives a smaller fitness function value
∆F during some generations. And when the target object is
moving, δψ̇ = 0 means at these moments that the evolution
speed of the best gene of GA is equal to the moving speed
of the target object, by (6). The number of these points
is assumed to be possibly finite, denoted by q. Thus, we
describe the set of P2 as

P2 = {0, δψG1, δψG2, · · · δψG(q−1)}. (13)

Notice that there is another solution set of δψ: P3. In this
case, the vector of ∂∆F/∂δψ is vertical to the vector of δψ̇
since the calculation (∆F/δψ)·δψ̇ in (11) means inner cross
product, which means GA evolves in the direction that keeps
a same fitness function value of ∆F . This GA’s evolution
way is forbidden in this research for the GA work rule (c)
that we have stated above. Then, P3 is null. So the invariant
set that δψ(t) asymptotically converges to is

P = P1

⋃
P2. (14)

Here, δψ1, δψ2, · · · , δψp−1 in P1 are all unstable since
δF (δψi) > 0 (i = 1, 2, · · · , p − 1), and only δψ = 0
is stable from [Assumption 1], since when t → ∞, there
should always remain the possibility to get out of local
maximum/minimum of δψ1 · · · δψp−1. And all the points in
P2 except the point 0 are unstable because GA has possibility
to get out of these points by its evolving nature. Therefore,
0 is the only stable point in the invariant set of P , that is,
δψ(t) will finally converges to 0. The image of the changing
of ∆F (δψ(t)) with respect to time t in the whole GA’s
evolution is shown in Fig.3.

The above verification shows δψ(t)→0, which means

ψGA
max(t)−→ψmax(t), (t→∞) (15)

Let tε denotes a convergence time, then

|δψ(t)| = |ψmax(t) − ψGA
max(t)|≤ε, (ε > 0, t≥tε) (16)

In (16), ε is tolerable extent that can be considered as
a observing error. Thus, it is possible to realize real-time
optimization, because ψGA

max(t) can be assumed to be in the
vicinity of the theoretically optimal ψmax(t) after tε.

Above discussion is under the condition of continuous
time. Here, when we consider evolution time of each gener-
ation of GA denoted by ∆t. The GA’s evolving process is
described as

ψj
i (t)

evolve−→ ψj+1
i (t + ∆t). (17)

Obviously, this time-discrete evolution with the interval of
time ∆t may enlarge the recognition error δψ(t). Should
this undesirable influence of ∆t be considered, the tolerable
pose error ε will expand to ε′ as,

|δψ(t)|≤ε′, (ε′ > ε > 0). (18)



Since the GA process to recognize the target’s pose at the
current time is executed at least one time with the period
of ∆t as the current quasi-optimal pose ψGA

max(t) is output
synchronously, we named this on-line recognition method
as “ 1-step GA”. We have confirmed that the above real-
time optimization problem could be solved by “1-step GA”
through several experiments to recognize swimming fish [8]
and human face [9].

III. DYNAMICS OF HAND AND EYE

The equation of motion of a robot is

M(q)q̈ + h(q, q̇)q̇ + g(q) = τ (19)

here we define

qE =




q1

...
q7


 , qR =

[
q8

q9

]
, qL =

[
q8

q10

]
,vE =

[
ṙE

ωE

]

the compensation of robot’s dynamics the outputs:

τ = M(q)φ + h(q, q̇)q̇ + g(q) (20)

Taking the compensation (20) into (19), closed loop dynam-
ics is:

q̈ = φ (21)

φE =




φ1

...
φ7


 ,φR =

[
φ8

φ9

]
,φL =

[
φ8

φ10

]
,

On the other hand the position compensation of the end-
effector is:

ap = p̈d + KDp
∆ṗdE + KPp

∆pdE (22)

here

∆pdE = pd − pE (23)

here, pd and pE means the desired position and actual
position of the end-effector.

The orientation compensation of the end-effector is:

ao = ω̇d + KDo∆ωdE + KPoRE
EεdE (24)

and

∆ωdE = ωd − ωE (25)

here, ωd and ωE means the desired angular velocity and
actual angular velocity of the end-effector, where KDo and
KPo are suitable positive definitive feedback matrix gains.
EεdE means the orientation error between the desired and the
actual end-effector orientation, while the letter in the top left
corner express the coordinate where the vector or the rotation
matrix is expressed in. When there is no letter on the top left
corner it means the vector or the matrix is expressed in the
world frame. EεdE can be calculated by (2).

φE can be calculated by:

φE = J+
E(qE)

([
ap

ao

]
− J̇E(qE , q̇E)q̇E

)
(26)

here we define aT = [aT
p ,aT

o ]T

The compensation of the camera is:
Eaco = Eω̇d + KDo

∆Eωdc + KPo

ERc
c
εdc (27)

cεdc which means the orientation error between the desired
and the actual camera orientation expressed in the camera
coordinate, can be also calculated by (2).

Take the right camera as an example, φR can be calculated
as:

φR = EJ+
R(qR)(EaRo − EJ̇R(qR)q̇R) (28)

here, JE is the Jacobian matrix from the world coordinate to
the end-effector, EJR is the Jacobian matrix from the end-
effector to the right camera, the equations will be introduced
more detailed in the section 5.

Take (26) and (28) into (21) we have

a = JE(qE)q̈E + J̇E(qE)q̇E (29)
EaRo = EJR(qR)q̈R + EJ̇R(qR)q̇R (30)

so [
p̈E

ω̇E

]
=

[
ap

ao

]
(31)

Eω̇R = EaRo (32)
Eω̇L = EaLo can be deduced in the similar way.

Submit (22), (24) into (31), then we have

p̈E = p̈d + KDp
∆ṗdE + KPp

∆pdE (33)

ω̇E = ω̇d + KDo
∆ωdE + KPo

RE
EεdE (34)

submit (27) into (32), we have
Eω̇c = Eω̇d + KDo

∆Eωdc + KPo

ERc
cεdc (35)

Finally we get closed loop hand camera motions are,

∆p̈dE + KDp
∆ṗdE + KPp

∆pdE = 0 (36)

∆ω̇dE + KDo
∆ωdE + KPo

RE
EεdE = 0 (37)

∆Eω̇dc + KDo
∆Eωdc + KPo

ERc
cεdc = 0 (38)

IV. PROVE OF THE CONVERGENCE OF THE SYSTEM BY
LYAPUNOV METHOD

Here, we discuss about the convergence of our proposed
Hand & eye vergence dual visual servoing system. We invoke
a Lyapunov argument, the feed back gains are taken as scalar
matrices, i.e. KDp = KDpI , KPp = KPpI , KDo = KDoI
and KPo

= KPo
I . Here we assume that the feedback gains

of the links are the same.

ν = ∆pT
dEKPp∆pdE + ∆ṗT

dE∆ṗdE

+KPo
((ηdE − 1)2 + EεT

dE
EεdE) +

1
2
∆ωT

dE∆ωdE

+KPo((
Eηdc − 1)2 + cεT

dc
cεdc) +

1
2
∆EωT

dc∆
Eωdc

≥ 0 (39)



so

ν̇ = −2∆ṗT
dE(∆p̈dE + KPp

∆pdE)

+2KPo
((ηdE − 1)η̇dE + EεT

dE
E ε̇dE) + ∆ωT

dE∆ω̇dE

+2KPo
((Eηdc − 1)E η̇dc + cεT

dc
cε̇dc)

+∆EωT
dc∆

Eω̇dc (40)

from (36) we can know that

∆p̈dE + KPp
∆pdE = −KDp

∆ṗdE (41)

from the quaternion definition we can know that [5]

η̇dE = −1
2

EεT
dE∆EωdE (42)

and

E η̇dc = −1
2

cεT
dc∆

cωdc (43)

and

E ε̇dE =
1
2
E(ηdE ,E εdE)∆EωdE (44)

cε̇dc =
1
2
E(cηdc,

cεdc)∆cωdc (45)

where E(η, ε) = ηI−S(ε). Substitute (37), (38), (41), (42),
(43), (44) and (45) into (40) we can get

ν̇ = −2KDp∆ṗT
dE∆ṗdE − KDo∆ωT

dE∆ωdE

−KDo∆
EωT

dc∆
Eωdc ≤ 0 (46)

For KPp and KPo are positive-definite, only if when
∆ṗdE = 0, ∆ωdE = 0 and ∆ωdc = 0, ν̇ = 0, For
∆ṗdE = 0 then ∆p̈dE = 0, from (36), we can know that
∆pdE = 0, When ∆ωdE = 0 and ∆ωdc = 0, ∆ω̇dE = 0
and ∆ω̇dc = 0, from (37) and (38) we can know EεdE = 0
and cεdc = 0. The definition domain of θ is (−π, π), so the
manipulator and the cameras asymptotically converge to the
invariant sets sp, so and sc:

sp = {∆pdE = 0, ∆ṗdE = 0} (47)
so = {ηdE = 1, EεdE = 0, ∆ωdE = 0} (48)
sc = {ηdc = 1, cεdc = 0, ∆Eωdc = 0} (49)

Thus, the hand & Eye-vergence visual servoing system
will be converged to the sets sp, so, sc, as shown in (47),
(48), (49). (47) and (48) shows the hand is exponentially
stable for any choice of positive definnitive KDp

, KPp
,

KDo
, KPo

, thus.

lim
t→∞

W rE,Ed = 0 lim
t→∞

W ṙE,Ed = 0 (50)

lim
t→∞

E∆ε = 0 lim
t→∞

W ωc,cd = 0. (51)

Then we have

lim
t→∞

ET Ed = I lim
t→∞

EṪ Ed = 0 (52)

Substituting Eq. (52) to Eq. (56), we have

lim
t→∞

ET M̂ = lim
t→∞

EdT M̂ (53)

Eq. (53) proves stable convergence of visual servoing.
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Fig. 4. Visual servoing system of PA-10

(49) shows

lim
t→∞

cεdc = 0, lim
t→∞

ηdc = 1 (54)

so the rotation matrix from the actual orientation to the
desired orientation of the camera cRdc will [5] :

lim
t→∞

cRdc = lim
t→∞

(cη2
dc − cεT

dc
cεdc)I + 2cεdc

cεT
dc

+2cηdcS(cεdc)
= I (55)

The orientation error can exponentially converge to 0.

V. HAND & EYE VISUAL SERVOING

A. Desired-trajectory generation

The desired relative relationship of ΣM and ΣE is given by
Homogeneous Transformation as EdT M (t), the difference of
the desired camera pose ΣEd and the actual camera pose ΣE

is denoted as ET Ed. ET Ed can be described by
ET Ed = ET̂ M (ψ̂(t)) MT Ed(t), (56)

Notice that Eq. (56) is a general deduction that satisfies
arbitrary object motion W T M (t) and arbitrary objective of
visual servoing EdT M (t).

Differentiating Eq. (56) with respect to time yields

EṪ Ed(t) = E ˙̂
TM (t)MT Ed(t) + ET̂ M (t)M Ṫ Ed(t), (57)

Differentiating Eq. (57) with respect to time again

ET̈ Ed(t) = E ¨̂
TM (t)MT Ed(t) + 2E ˙̂

TM (t)M Ṫ Ed(t)+
ET̂ M (t)M T̈ Ed(t), (58)

Where, MT Ed, M Ṫ Ed, M T̈ Ed are given as the desired visual
servoing objective. ET̂ M , E ˙̂

TM , E ¨̂
TM can be observed by

cameras using the 1-step GA method.

B. Hand & Eye Visual Servoing Controller

The block diagram of our proposed hand & eye-vergence
visual servoing controller is shown in Fig. 4. The hand-visual
servoing is the outer loop.

Here, we just show main equations of the hand visual
servoing controller that are used to calculate input torque τ
as:

q̈Ed = J+
E(qE)

([
ap

ao

]
− J̇E(qE , q̇E)q̇E

)
+

(
I−

J+
E(qE)JE(qE)

)(
Ep(qE0

− qE) + Ed(0 − q̇E)
)
, (59)



Here, q̈E is a 7×1 vector representing the angles of the first
7 links of the PA-10 manipulator. The quaternion error from
the actual orientation to the desired orientation of the end ef-
fector E∆ε can be extracted from the transformation ET Ed,
and the other error variables in (22), (24) are described in
ΣW , which can be calculated by the transformation ET Ed,
EṪ Ed, ET̈ Ed in (56), (57), (58), using the rotational matrix
W RE(q) through coordinate transformation.

And J+
E(qE) in (26) is the pseudo-inverse of JE(qE)

given by J+
E(qE) = JT

E(JEJT
E)−1. KDp

, KPp
, KDo

,
KPo

are positive control gains.
The eye-vergence visual servoing is the inner loop of the

visual servoing system shown in Fig. 4. In this paper, we
use two pan-tilt cameras for eye-vergence visual servoing.
Here, the positions of cameras are supposed to be fixed on
the end-effector. For camera system, q8 is tilt angle, q9 and
q10 are pan angles, and q8 is common for both cameras. As
it is shown in Fig. 5, ExM̂ , EyM̂ , EzM̂ express position of
the detected object in the end-effector coordinate, ΣE . The
desired angle of the camera joints are calculated by:

q8d = atan2(EzM̂ , EyM̂ ) (60)

q9d = atan2(EzM̂ ,−l8R + ExM̂ ) (61)

q10d = atan2(EzM̂ , l8L + ExM̂ ) (62)

where l8L = l8R = 150[mm] that is the camera location.

EωR =




1 cos q8

0 0
0 sin q8




[
q̇8

q̇9

]
(63)

define

EJR =




1 cos q8

0 0
0 sin q8


 (64)

here EJR is the Jacobian matrix from the end-effector to the
right camera, q̇R = [q̇8, q̇9]T , (63) also can be written as

EωR = EJRq̇R (65)

and

EωRd = EJRdq̇Rd (66)

and Eω̇Rd can be calculated by:

Eω̇Rd = EJ̇Rdq̇Rd + EJRdq̈Rd, (67)

and the quarternion error from the actual orientation to the
desired orientation of the right camera R∆ε can be calculated
by [q8, q9] and [q8d, q9d], so the compensation of the joint of
the right camera can be calculated by:

φR = EJ+
R(qR)(EaRo − EJ̇R(qR)q̇R) (68)

In the similar way we can calculate the desired angular
acceleration of the left camera. By controlling the cameras
we can get better observation effect to decrease MT M̂ and to
move the end-effector to the desired position and orientation
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Fig. 5. Calculation of tilt and pan angles

By the controller of the whole hand & eye-vergence dual
visual servoing system is:

φ =




φE

φR

φ10


 (69)

τ = M(q)φ + h(q, q̇)q̇ + g(q). (70)

Here, τ is a 10× 1 vector, and τ means the input torque of
the 7-links manipulator and 3-links camera system.

VI. CONCLUSION

In this paper, we use on-line 1-step genetic algorithm (1-
step GA) to recognize the 6-D object in a much bigger space
comparing with other recognition methods, then we guaran-
tee the convergence of this method by Lyapunov theorem,
and apply it into simulation, and prove the convergence of
motion of the system by Lyapunov theorem. In the future
we will improve the stability and recognition speed of this
method, and apply it into more fields.
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